Método Computacional para Segmentação não Supervisionada de Imagens Histológicas de Linfoma

Local: 
Anfiteatro do Bloco 1X - Horário: 14h00min
Banca examinadora: 
Prof. Dr. Marcelo Zanchetta do Nascimento (orientador) - FACOM/UFU
Prof. Dr. Bruno Augusto Nassif Travençolo - FACOM/UFU
Prof. Dr. Marcelo Costa Oliveira - IC/UFAL

O processamento de imagens histológicas representa uma das maiores evoluções da medicina moderna. Aliados a essa evolução, métodos computacionais vêm sendo amplamente desenvolvidos para auxiliar especialistas na análise dessas imagens para determinar diagnósticos, prognósticos e tratamentos adequados à condição do paciente. Porém, ao ser realizada por especialistas, essa tarefa torna-se dispendiosa e suscetível a variabilidades inter e intrapatologistas. Para aperfeiçoar tal prática tradicional para diagnósticos de Linfoma de Células do Manto, Linfoma Folicular e Leucemia Linfóide Crônica, este trabalho propõe um método para a segmentação não supervisionada dos componentes nucleares de células indicativas de tais neoplasias utilizando imagens histológicas coradas com Hematoxilina-Eosina. O método proposto foi dividido nas etapas de pré-processamento, segmentação e pós-processamento. Na etapa de pré-processamento, as técnicas de equalização do histograma e filtro gaussiano foram aplicadas sobre os canais componentes do modelo de cores RGB. Na segmentação, foi aplicada uma técnica de limiarização resultante da combinação entre os métodos fuzzy 3-partition entropy e algoritmo genético. Por fim, para aperfeiçoamento dos resultados da segmentação, foram utilizadas operações morfológicas e a técnica valley-emphasis. Para avaliar o método desenvolvido, imagens histológicas de linfoma com magnificação 20× foram selecionadas e segmentadas manualmente por um especialista. Essas imagens de referência (padrão-ouro) permitiram a extração de medidas quantitativas para a comparação entre este método e diferentes técnicas propostas na literatura. Além disso, uma avaliação qualitativa foi realizada levando a resultados relevantes e superiores aos trabalhos comparados. Também foi analisada a sua aplicação sobre as etapas de extração de características e classificação das diferentes lesões consideradas, obtendo resultados de acurácia próximos a 100%.