O uso da Divergência de Kullback-Leibler e da Divergência Generalizada como medida de similaridade em sistemas CBIR

Nome do Aluno: 
Local: 
Sala 1B132, Bloco 1B, Campus Santa Mônica - Horário: 9h30min
Banca examinadora: 
Prof.ª Dr.ª Célia Aparecida Zorzo Barcelos (orientadora) - FAMAT/UFU
Prof.ª Dr.ª Denise Guliato - FACOM/UFU
Prof. Dr. Marcos Aurélio Batista – DCC/UFG-Catalão

A recuperação de imagem baseada em conteúdo é importante para diversos fins, como diagnósticos de doenças a partir de tomografias computadorizadas, por exemplo. A relevância social e econômica de sistemas de recuperação de imagens criou a necessidade do seu aprimoramento. Dentro deste contexto, os sistemas de recuperação de imagens baseadas em conteúdo são compostos de duas etapas: extração de característica e medida de similaridade. A etapa de similaridade ainda é um desafio, devido à grande variedade de funções de medida de similaridade, que podem ser combinadas com as diferentes técnicas presentes no processo de recuperação e retornar resultados que nem sempre são os mais satisfatórios. As funções geralmente mais usadas para medir a similaridade são as distâncias Euclidiana e Cosseno, mas alguns pesquisadores têm notado algumas limitações nestas funções de proximidade convencionais, na etapa de busca por similaridade. Por esse motivo, as divergências de Bregman (Kullback Leibler e Generalizada) têm atraído a atenção dos pesquisadores, devido à sua flexibilidade em análise de similaridade. Desta forma, o objetivo desta pesquisa foi realizar um estudo comparativo sobre a utilização das divergências de Bregman em relação às distâncias Euclidiana e Cosseno, na etapa de similaridade da recuperação de imagens baseadas em conteúdo, averiguando as vantagens e desvantagens de cada função. Para isso, criou-se um sistema de recuperação de imagens baseado em conteúdo em duas etapas: off-line e on-line, utilizando as abordagens BSM, FISM, BoVW e BoVW-SPM. Com esse sistema, foram realizados três grupos de experimentos utilizando os bancos de dados: Caltech101, Oxford e UK-bench. O desempenho do sistema de recuperação de imagem baseada em conteúdo utilizando as diferentes funções de similaridade foram testadas por meio das medidas de avaliação: Mean Average Precision, normalized Discounted Cumulative Gain, precisão em k, e precisão x revocação. Por fim, o presente estudo aponta que o uso das divergências de Bregman (Kullback Leibler e Generalizada) obteve melhores resultados do que as distâncias Euclidiana e Cosseno, com ganhos relevantes para recuperação de imagem baseada em conteúdo.